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PROGRESS REPORT

During the past year considerable progress has been made in three areas which cover a variety
of subjects of potential interest to the Naval Air Systems Command. First, we have obtained an
additional physical explanation for visual sensitivity at 589 nanometers (nm) which suggests that
there may be other monochromatic wavelengths with high visual sensitivity. Second, we have
applied new femtosecond lasers to elucidate new unresolved primary processes in visual
transduction. Third, we have been studying fundamental mechanisms in a unique radidly adjustable
light filter based on molecules used in visual systems.

FUNDAMENTAL STUDIES OF VISUAL SENSITIVITY AT 589 nm

Over the last year as a result of research under our contract with the Naval Air System Com-
mand, we have been able to determine the vibrational modes stimulated in the visual chromophore
by monochromatic emissions of interest to the United States Navy. Such studies are particularly
important in developing an understanding of visual sensitivity control at these wavelengths. Our
data has helped us arrive at an additional physical explanation for sensitivity at 589 nm. First, the
data will be reviewed and then the conclusions will be summarized.

In Table I a list of the vibrational modes observed for the different double bond isomeric
forms of the visual chromophore are reproduced for monochromatic yellow light at 589 nm. The
descriptions of these modes were gleaned from a variety of chemically modified retinals. Princi-
pally, several major groups of bands are observed beginning with the C-H bending vibration of
chain vinyl hydrogens around -960 cm- 1 (A cm- from laser). This is followed by C=Ch 3 stretching
modes at -1010 cm-1 arising from the C9 and C13 positions and the region between - 1100 -
-1200 cm 1 known as the fingerprint region. The fingerprint region is composed of C-C/C=C
stretching modes which are very sensitive to the configuration of the isoprenoid chain both in
terms of the relative intensity and frequency of the vibrational modes. In Schiff bases (i.e., X=N)
there is an additional mode between -1220 - -1250 cm - 1 which is dependent on the state of
protonation of the nitrogen and exhibits frequency alteration in concert with the C=N vibrational
frequency. The next higher frequency mode occurs at -1272 cm- T. This mode occurs with varying
intensity in most retinal type molecules. It appears, however, that this mode exhibits its largest
intensity when the chromophore is in an 1 1-cis configuration. Between -1300 and 1475 cm" 1 there
are a whole series of weak bands. Our data show that the band in 1 1-cis retinal at 1345 cm- 1 is
altered by temperature and chemical modification in a way that indicates it is sensitive to the
presence of 12-s-cis and 12-s-trans conformers that this isomer is capable of attaining. The most
prominent band in the spectrum follows this group of weak vibrational structure. Our data clearly
indicate that this mode is due to the C=C stretching vibration. In a number of cases the mode is
split into several components. In addition to the above, the C=C stretching frequency generally
seems to follow the absorption maximum of the chromophore and thus protonated membrane
bound components have frequencies ranging -1525 to -1545 cm "1, protonated isolated (un-
bound) chromophores -1555 cm 1, unprotonated bound chromophores from possibly as low as
-1550 to 1570 cm- 1 and free retinals and unbound unprotonated chromophores between -15700
and 1580 cm "1. Finally, one observes one of the weakest vibrational modes in the spectrum. This
mode, which has provided a wealth of information, occurs between -1620 and 1655 cm- 1 and cor-
responds to the -C=X stretching mode where X is 0 or N, a protonated or unprotonated Schiff base.
For these species the vibrational frequencies are, respectively, -1656 cm"1, 1642-1655 cm" 1 and
-1620 cm "1 .
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In summary an overview of these results provides a striking view of possible additional reasons
for the sensitivity of the eye to 589 nm light. The data at this wavelength indicate a pattern of vibra-
ticnal modes which is characteristic for rapid vibrational deactivation. Based on the data in Table I
and our analysis we feel we have a unique explanation for 589 nm sensitivity. Thus we should now
be able to survey and fingerprint various other monochromatic sources. Our data indicate that there
should be other emissions that would give similar sensitivity.

UNRESOLVED PRIMARY PROCESS IN VISUAL TRANSDUCTION

The most probable description of the primary events in visual transduction is that light not
only alters the retinal conformation but also causes excited and ground state protein conforma-
tional changes. A pictorial description of the suggested sequence of events for rhodopsin is re-
produced from a paper by this author (1) and is seen in Figure 1. In this figure the states R, R,
Px and Batho represent, respectively, rhodopsin, vertically excited rhodopsin, excited rhodopsin
in the excited state minimum and the primary photochemical product bathorhodopsin which stores
12 Kcal of the light energy in an altered and separated R-R' salt linkage. Thus, electron motion in
the isoprenoid molecular wire is coupled to proton movement in the protein. Retinal structural
alteration keeps R and R' separated and a definite retinal structural alternation is suggested with
double bond twists around the 9-10 and 11-12 double bonds. Nearly universal agreement has been
achieved on ground state protein structural alteration and excited state retinal structural alteration.
Arguments for excited and ground state retinal structural alteration (1) seen in Figure 1 can readily
be made on the basis of photoreversibility and by experiments showing that the L thermal inter-
mediate will directly and thermally revert to rhodopsin at appropriate temperature. Arguments for
ground state protein structural alteration can be made based on D20 psec experiments (1).
However, arguments for excited state protein motion have only recently been demonstrated as part
of the research done under this contract during the past year.

In order to demonstrate such excited state protein motion, we have used a ring dye laser sys-
tem of the design recently reported by Shank et al (2). This system produces 100x10-15 sec
(100 fsec) pulses at a wavelength of 619 nm. The pulses emanate from a mode-locked colliding ring
dye amplifier pumped by a frequency doubled Nd:YAG laser. The pump probe technique was used
where the pulse train is split into two beams (see Figure 2) with the pump pulse going through a
chopper and the probe pulse being delayed relative to the pump by a variable delay stepping motor.
The data obtained is seen in Figure 3. The dashed curve is the autocorrelation of the pulse showing
its 100 fsec character. The solid curve is rhodopsin in H2 0 which shows a time delay of 1.5 psec for
the onset of the primary photochemical species after light strikes the sample. The dotted curve is
rhodopsin in D2 0. This yields the fascinating result that in D2 0 a more rapid rise time is obtained.
This is clearly a most significant result that reaches to the very heart of the primary photochemical
act in vision. It is also a most surprising result, which at present cannot be understood but will be
probed in detail during the coming contract year.

FUNDAMENTAL MECHANISMS OF A RAPIDLY ADJUSTABLE MOLECULAR LIGHT FILTER

In several color vision systems natural filters in the form of oil droplets cover the photorecep-
tor cells. These natural filters are formed of carotenoids and have severely altered absorption prop-
erties (3). These observations and additional work done in our laboratory suggested to us that the
fundamental properties of carotenoid suspensions may provide important clues as to how we might
develop a molecular light filter with the ability to rapidly alter its absorption properties.
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Initial results in our laboratory showed that carotenoid suspensions decreased their light trans-
mission over a broad range when illuminated vith picosecond (psec) pulses at a variety of wave-
lengths. The molecular origin of these rapid light induced alternations in carotenoid absorption are
being clarified as a result of our resonance Raman measurements of such systems over the past year.

These measurements on the carotenoid, astaxanthin, showed an alteration in the C=C stretching
vibration from 1517 cm "1 , under the action of a 1.06/u, 30 mJ, 150 psec pulse, to 1524 cm "1 with-
out psec excitation. In order to appreciate the molecular origin of these alterations in the resonance
Raman spectrum of astaxanthin, consider the spectrum seen in Figure 4 which is of a CC1 4 solution
of astaxanthin under the action of a 30 mJ, 150 psec pulse at 1.06,u. All observed bands are typical
of carotenoids (2) and the strong vibrational mode at 1517 cm"1 is the C=C stretching vibration.
This vibrational mode and those observed at 1007 cm "1, 1158 cm- 1, 1186 cm "1 and 1214 cm"1 are
common to most carotenoids. The scattering at 1272 cm 1 is typical to astaxanthin.

Figure 5 is the excitation profile of the most prominent Raman Ijie of the same solution dis-
cussed above under the action of the psec pulse. There is no maximum, but an increase in intensity
towards lower wavelengths. It has been shown (4) that the 0-0 transition makes the major contribu-
tion to the intensity enhancement of the Raman fundamentals, while the absorption maximum has
additional contributions from 0-1, 0-2, 0-3 transitions, so that the maximum of the excitation pro-
file occurs about 1600 cm-1 to the long wavelength side of the absorbance peak. The presence of
excited state interactions which appear upon aggregation of the molecules, modifies the vibronic
structure of the absorption band so that is consists of only the 0-0 transition. The absence of a
maximum in Figure 5 at about 5200 A indicates the presence of aggregates. Without the simul-
taneous illumination of the sample with the psec pulse a normal maximum is seen at 5200 A. Thus,
the above data strongly suggests that the molecular origin of the psec induced absorption changes is
excited state interactions in molecular aggregates.

Table II lists the position of the C=C stretching mode VC=C for various excitation wavelengths
with simultaneous illumination of the sample with a 1.06Mi psec pulse. For carotenoids the vibra-
tional frequency should be 1523 cm-1 for astaxanthin (4). It has been observed that these vibra-
tional frequencies shift down by 5-6 cm " 1 upon aggregation. For a mixture of monomers and differ-
ent size aggregates, VC=C is given by:

N
VC=C(X) = Z VC=Cn *IR(n,X)

n=1

where VC=C n is VC=C for an aggregate of n molecules, IR(n,X) is the Raman intensity for an
aggregate of n molecules at excitation wavelength X, and the summation is over all possible sizes.
Thus, it appears that the solution under the action of a psec pulse shows evidence for a large ratio
of aggregates. Without the action of the psec pulse the C=C stretch exhibits no change as a function
of the laser frequency that excites the Raman spectrum.

7
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Table I1. C=C Stretching Mode VC=C for Various Excitation Wavelengths

C=C Stretching
Excitation Wavelength C=C Stretching Frequency Frequency with no
Used to Obtain the with Simultaneous psec Simultaneous psec
Raman Spectrum Illumination Illumination

4579 1524 1524
4880 1528 1524
5145 1522 1523
5208 1522 1524
5309 1521 1524
5682 1517 1524
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